Fuzzy Model Identification for Control e-bog
875,33 DKK
(inkl. moms 1094,16 DKK)
Overview Since the early 1990s, fuzzy modeling and identification from process data have been and continue to be an evolving subject of interest. Although the application of fuzzy models proved to be effective for the approxima- tion of uncertain nonlinear processes, the data-driven identification offuzzy models alone sometimes yields complex and unrealistic models. Typically, this is due to th...
E-bog
875,33 DKK
Forlag
Birkhauser
Udgivet
6 december 2012
Genrer
Cybernetics and systems theory
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9781461200277
Overview Since the early 1990s, fuzzy modeling and identification from process data have been and continue to be an evolving subject of interest. Although the application of fuzzy models proved to be effective for the approxima- tion of uncertain nonlinear processes, the data-driven identification offuzzy models alone sometimes yields complex and unrealistic models. Typically, this is due to the over-parameterization of the model and insufficient in- formation content of the identification data set. These difficulties stem from a lack of initial a priori knowledge or information about the system to be modeled. To solve the problem of limited knowledge, in the area of modeling and identification, there is a tendency to blend information of different natures to employ as much knowledge for model building as possible. Hence, the incorporation of different types of a priori knowledge into the data-driven fuzzy model generation is a challenging and important task. Motivated by our research into this topic, our book presents new ap- proaches to the construction of fuzzy models for model-based control. New model structures and identification algorithms are described for the effec- tive use of heterogenous information in the form of numerical data, qualita- tive knowledge and first-principle models. By exploiting the mathematical properties of the proposed model structures, such as invertibility and local linearity, new control algorithms will be presented.