Reaction-Diffusion Automata: Phenomenology, Localisations, Computation (e-bog) af Adamatzky, Andrew
Adamatzky, Andrew (forfatter)

Reaction-Diffusion Automata: Phenomenology, Localisations, Computation e-bog

1240,73 DKK (inkl. moms 1550,91 DKK)
Reaction-diffusion and excitable media are amongst most intriguing substrates. Despite apparent simplicity of the physical processes involved the media exhibit a wide range of amazing patterns: from target and spiral waves to travelling localisations and stationary breathing patterns. These media are at the heart of most natural processes, including morphogenesis of living beings, geological fo...
E-bog 1240,73 DKK
Forfattere Adamatzky, Andrew (forfatter)
Forlag Springer
Udgivet 14 september 2012
Genrer Cybernetics and systems theory
Sprog English
Format pdf
Beskyttelse LCP
ISBN 9783642310782
Reaction-diffusion and excitable media are amongst most intriguing substrates. Despite apparent simplicity of the physical processes involved the media exhibit a wide range of amazing patterns: from target and spiral waves to travelling localisations and stationary breathing patterns. These media are at the heart of most natural processes, including morphogenesis of living beings, geological formations, nervous and muscular activity, and socio-economic developments. This book explores a minimalist paradigm of studying reaction-diffusion and excitable media using locally-connected networks of finite-state machines: cellular automata and automata on proximity graphs. Cellular automata are marvellous objects per se because they show us how to generate and manage complexity using very simple rules of dynamical transitions. When combined with the reaction-diffusion paradigm the cellular automata become an essential user-friendly tool for modelling natural systems and designing future and emergent computing architectures. The book brings together hot topics of non-linear sciences, complexity, and future and emergent computing. It shows how to discover propagating localisation and perform computation with them in very simple two-dimensional automaton models. Paradigms, models and implementations presented in the book strengthen the theoretical foundations in the area for future and emergent computing and lay key stones towards physical embodied information processing systems.