Multiple Comparisons Using R (e-bog) af Westfall, Peter
Westfall, Peter (forfatter)

Multiple Comparisons Using R e-bog

348,37 DKK (inkl. moms 435,46 DKK)
Adopting a unifying theme based on maximum statistics, Multiple Comparisons Using R describes the common underlying theory of multiple comparison procedures through numerous examples. It also presents a detailed description of available software implementations in R. The R packages and source code for the analyses are available at http://CRAN.R-project.orgAfter giving examples of multiplicity p...
E-bog 348,37 DKK
Forfattere Westfall, Peter (forfatter)
Udgivet 19 april 2016
Længde 205 sider
Genrer MBGR1
Sprog English
Format pdf
Beskyttelse LCP
ISBN 9781420010909
Adopting a unifying theme based on maximum statistics, Multiple Comparisons Using R describes the common underlying theory of multiple comparison procedures through numerous examples. It also presents a detailed description of available software implementations in R. The R packages and source code for the analyses are available at http://CRAN.R-project.orgAfter giving examples of multiplicity problems, the book covers general concepts and basic multiple comparisons procedures, including the Bonferroni method and Simes test. It then shows how to perform parametric multiple comparisons in standard linear models and general parametric models. It also introduces the multcomp package in R, which offers a convenient interface to perform multiple comparisons in a general context. Following this theoretical framework, the book explores applications involving the Dunnett test, Tukeys all pairwise comparisons, and general multiple contrast tests for standard regression models, mixed-effects models, and parametric survival models. The last chapter reviews other multiple comparison procedures, such as resampling-based procedures, methods for group sequential or adaptive designs, and the combination of multiple comparison procedures with modeling techniques.Controlling multiplicity in experiments ensures better decision making and safeguards against false claims. A self-contained introduction to multiple comparison procedures, this book offers strategies for constructing the procedures and illustrates the framework for multiple hypotheses testing in general parametric models. It is suitable for readers with R experience but limited knowledge of multiple comparison procedures and vice versa.See Dr. Bretz discuss the book.