Handbook of Data Science Approaches for Biomedical Engineering e-bog
1240,73 DKK
(inkl. moms 1550,91 DKK)
Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of...
E-bog
1240,73 DKK
Forlag
Academic Press
Udgivet
13 november 2019
Længde
318 sider
Genrer
Biomedical engineering
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9780128183199
Handbook of Data Science Approaches for Biomedical Engineering covers the research issues and concepts of biomedical engineering progress and the ways they are aligning with the latest technologies in IoT and big data. In addition, the book includes various real-time/offline medical applications that directly or indirectly rely on medical and information technology. Case studies in the field of medical science, i.e., biomedical engineering, computer science, information security, and interdisciplinary tools, along with modern tools and the technologies used are also included to enhance understanding. Today, the role of Big Data and IoT proves that ninety percent of data currently available has been generated in the last couple of years, with rapid increases happening every day. The reason for this growth is increasing in communication through electronic devices, sensors, web logs, global positioning system (GPS) data, mobile data, IoT, etc. Provides in-depth information about Biomedical Engineering with Big Data and Internet of Things Includes technical approaches for solving real-time healthcare problems and practical solutions through case studies in Big Data and Internet of Things Discusses big data applications for healthcare management, such as predictive analytics and forecasting, big data integration for medical data, algorithms and techniques to speed up the analysis of big medical data, and more