Semiconducting Silicon Nanowires for Biomedical Applications (e-bog) af -
Coffer, Jeffery L. (redaktør)

Semiconducting Silicon Nanowires for Biomedical Applications e-bog

25,00 DKK (inkl. moms 31,25 DKK)
Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material. The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, ...
E-bog 25,00 DKK
Forfattere Coffer, Jeffery L. (redaktør)
Udgivet 17 februar 2014
Længde 296 sider
Genrer Biomedical engineering
Sprog English
Format pdf
Beskyttelse LCP
ISBN 9780857097712
Biomedical applications have benefited greatly from the increasing interest and research into semiconducting silicon nanowires. Semiconducting Silicon Nanowires for Biomedical Applications reviews the fabrication, properties, and applications of this emerging material. The book begins by reviewing the basics, as well as the growth, characterization, biocompatibility, and surface modification, of semiconducting silicon nanowires. It goes on to focus on silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffolds, mediated differentiation of stem cells, and silicon nanoneedles for drug delivery. Finally, it highlights the use of silicon nanowires for detection and sensing. These chapters explore the fabrication and use of semiconducting silicon nanowire arrays for high-throughput screening in the biosciences, neural cell pinning on surfaces, and probe-free platforms for biosensing. Semiconducting Silicon Nanowires for Biomedical Applications is a comprehensive resource for biomaterials scientists who are focused on biosensors, drug delivery, and tissue engineering, and researchers and developers in industry and academia who are concerned with nanoscale biomaterials, in particular electronically-responsive biomaterials. Reviews the growth, characterization, biocompatibility, and surface modification of semiconducting silicon nanowires Describes silicon nanowires for tissue engineering and delivery applications, including cellular binding and internalization, orthopedic tissue scaffolds, mediated differentiation of stem cells, and silicon nanoneedles for drug delivery Highlights the use of silicon nanowires for detection and sensing