Advances in Domain Adaptation Theory e-bog
1021,49 DKK
(inkl. moms 1276,86 DKK)
Advances in Domain Adaptation Theory gives current, state-of-the-art results on transfer learning, with a particular focus placed on domain adaptation from a theoretical point-of-view. The book begins with a brief overview of the most popular concepts used to provide generalization guarantees, including sections on Vapnik-Chervonenkis (VC), Rademacher, PAC-Bayesian, Robustness and Stability bas...
E-bog
1021,49 DKK
Forlag
ISTE Press - Elsevier
Udgivet
23 august 2019
Længde
208 sider
Genrer
Mathematics
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9780081023471
Advances in Domain Adaptation Theory gives current, state-of-the-art results on transfer learning, with a particular focus placed on domain adaptation from a theoretical point-of-view. The book begins with a brief overview of the most popular concepts used to provide generalization guarantees, including sections on Vapnik-Chervonenkis (VC), Rademacher, PAC-Bayesian, Robustness and Stability based bounds. In addition, the book explains domain adaptation problem and describes the four major families of theoretical results that exist in the literature, including the Divergence based bounds. Next, PAC-Bayesian bounds are discussed, including the original PAC-Bayesian bounds for domain adaptation and their updated version. Additional sections present generalization guarantees based on the robustness and stability properties of the learning algorithm. Gives an overview of current results on transfer learning Focuses on the adaptation of the field from a theoretical point-of-view Describes four major families of theoretical results in the literature Summarizes existing results on adaptation in the field Provides tips for future research