Eine Entdeckungsreise in die Welt des Unendlichen e-bog
Die Entdeckung, dass sich nicht jedes Verhältnis von zwei Streckenlängen als Verhältnis ganzer Zahlen ausdrücken lässt, hat gezeigt, dass sich nicht jede reelle Zahl durch einen endlichen Term ausdrücken lässt, sondern dass es dazu etwas Unendliches braucht. Solch eine Darstellung wurde aber erst zwei Jahrtausende später durch Dedekind gefunden. Kurze Zeit nach Dedekinds Konstruktion der reellen Zahlen hat Cantor eine Theorie entwickelt, die Mengenlehre, in der mit verschiedenen Unendlichkeiten gerechnet werden kann. Diese Theorie wurde später von Zermelo auf ein axiomatisches Fundament gestellt, auf dem die moderne Mathematik aufgebaut ist.
Die Reise wird immer wieder aufgelockert durch zahlreiche Beispiele und Übungsaufgaben, welche dabei helfen, den Text zu verstehen. Die Voraussetzungen sind so gewählt, dass das Buch bereits für Studierende mit geringen Vorkenntnissen zugänglich ist. Entstanden im Rahmen einer Vorlesung fürs Lehramt, richtet sich dieses Buch ganz besonders auch an Lehramtsstudierende.