Methods for Statistical Data Analysis of Multivariate Observations (e-bog) af Gnanadesikan, R.
Gnanadesikan, R. (forfatter)

Methods for Statistical Data Analysis of Multivariate Observations e-bog

2190,77 DKK (inkl. moms 2738,46 DKK)
A practical guide for multivariate statistical techniques-- nowupdated and revised In recent years, innovations in computer technology and statisticalmethodologies have dramatically altered the landscape ofmultivariate data analysis. This new edition of Methods forStatistical Data Analysis of Multivariate Observations explorescurrent multivariate concepts and techniques while retaining thesame...
E-bog 2190,77 DKK
Forfattere Gnanadesikan, R. (forfatter)
Udgivet 25 januar 2011
Genrer Mathematics
Sprog English
Format pdf
Beskyttelse LCP
ISBN 9781118030929
A practical guide for multivariate statistical techniques-- nowupdated and revised In recent years, innovations in computer technology and statisticalmethodologies have dramatically altered the landscape ofmultivariate data analysis. This new edition of Methods forStatistical Data Analysis of Multivariate Observations explorescurrent multivariate concepts and techniques while retaining thesame practical focus of its predecessor. It integrates methods anddata-based interpretations relevant to multivariate analysis in away that addresses real-world problems arising in many areas ofinterest. Greatly revised and updated, this Second Edition provides helpfulexamples, graphical orientation, numerous illustrations, and anappendix detailing statistical software, including the S (or Splus)and SAS systems. It also offers * An expanded chapter on cluster analysis that covers advances inpattern recognition * New sections on inputs to clustering algorithms and aids forinterpreting the results of cluster analysis * An exploration of some new techniques of summarization andexposure * New graphical methods for assessing the separations among theeigenvalues of a correlation matrix and for comparing sets ofeigenvectors * Knowledge gained from advances in robust estimation anddistributional models that are slightly broader than themultivariate normal This Second Edition is invaluable for graduate students, appliedstatisticians, engineers, and scientists wishing to usemultivariate techniques in a variety of disciplines.