Vorlesung über Differential- und Integralrechnung 1861/62 (e-bog) af Dedekind, Richard
Dedekind, Richard (forfatter)

Vorlesung über Differential- und Integralrechnung 1861/62 e-bog

337,32 DKK (inkl. moms 421,65 DKK)
§ 1. VORSTELLUNG DES ZAHLENGEBIETES Wir konnen jede ganze Zahl bildlich oder geometrisch darstellen. Nehmen wir zum Beispiel eine Linie von beliebiger Lange an, und auf derselben einen Punkt o. So konnen wir die Zahl eins so darstellen, indem wir eine beliebige konstante Lange auf dieser vom Nullpunkt aus nach rechts auftragen. Dieses Stuck reprasen­ tirt uns also die Zahl eins. Wollen wir die ...
E-bog 337,32 DKK
Forfattere Dedekind, Richard (forfatter)
Udgivet 2 juli 2013
Genrer Mathematics
Sprog German
Format pdf
Beskyttelse LCP
ISBN 9783663138846
§ 1. VORSTELLUNG DES ZAHLENGEBIETES Wir konnen jede ganze Zahl bildlich oder geometrisch darstellen. Nehmen wir zum Beispiel eine Linie von beliebiger Lange an, und auf derselben einen Punkt o. So konnen wir die Zahl eins so darstellen, indem wir eine beliebige konstante Lange auf dieser vom Nullpunkt aus nach rechts auftragen. Dieses Stuck reprasen­ tirt uns also die Zahl eins. Wollen wir die Zahl 2 geometrisch darstellen, so wissen wir, dass 2 = 1 + 1 ist. Wir haben also nur die Einheit zweimal vom Nullpunkt aus aufzutragen, oder von 1 aus noch einmal und erhalten das geometrische Bild der Zahl 2 . Urn das Bild der Zahl 3 zu erhalten, konnen wir unsere Langeneinheit dreimal vom Nullpunkt aus auftragen. Ebenso k- nen wir 4,5,6,7,8 ... bis bildlich darstellen. Wollen wir hingegen eine gebrochene Zahl geometrisch darstellen, zum Beispiel t, so waren wir dies mit unsern Langeneinheiten 7 3 3 nicht imstande, denn 4 = 14 ' und 4 ist eine Grosse, die kleiner ist als 1. Wir mussen daher unsere Lange in noch klei­ nere Theile eintheilen und zwar in Viertel. Dann sind wir erst 7 imstande, 4 geometrisch darzustellen.