Fixed Point Theory and Graph Theory e-bog
656,09 DKK
(inkl. moms 820,11 DKK)
Fixed Point Theory and Graph Theory provides an intersection between the theories of fixed point theorems that give the conditions under which maps (single or multivalued) have solutions and graph theory which uses mathematical structures to illustrate the relationship between ordered pairs of objects in terms of their vertices and directed edges. This edited reference work is perhaps the fi...
E-bog
656,09 DKK
Forlag
Academic Press
Udgivet
20 juni 2016
Længde
442 sider
Genrer
PBD
Sprog
English
Format
epub
Beskyttelse
LCP
ISBN
9780128043653
Fixed Point Theory and Graph Theory provides an intersection between the theories of fixed point theorems that give the conditions under which maps (single or multivalued) have solutions and graph theory which uses mathematical structures to illustrate the relationship between ordered pairs of objects in terms of their vertices and directed edges. This edited reference work is perhaps the first to provide a link between the two theories, describing not only their foundational aspects, but also the most recent advances and the fascinating intersection of the domains. The authors provide solution methods for fixed points in different settings, with two chapters devoted to the solutions method for critically important non-linear problems in engineering, namely, variational inequalities, fixed point, split feasibility, and hierarchical variational inequality problems. The last two chapters are devoted to integrating fixed point theory in spaces with the graph and the use of retractions in the fixed point theory for ordered sets. Introduces both metric fixed point and graph theory in terms of their disparate foundations and common application environments Provides a unique integration of otherwise disparate domains that aids both students seeking to understand either area and researchers interested in establishing an integrated research approach Emphasizes solution methods for fixed points in non-linear problems such as variational inequalities, split feasibility, and hierarchical variational inequality problems that is particularly appropriate for engineering and core science applications