Lineare Algebra 2 e-bog
192,41 DKK
(inkl. moms 240,51 DKK)
In diesem Band des zweiteiligen Lehrbuchs zur Linearen Algebra werden zum einen verschiedene Anwendungen zu den Themen des ersten Bandes vertieft: es wird die Lösungstheorie linearer gewöhnlicher Differentialgleichungen mit konstanten Koeffizienten vorgestellt. Zum anderen werden die formalen Konzepte der linearen Algebra vertieft. Neben Quotientenkonstruktionen und der Theorie der symmetrische...
E-bog
192,41 DKK
Forlag
Springer Spektrum
Udgivet
17 november 2016
Genrer
PBF
Sprog
German
Format
pdf
Beskyttelse
LCP
ISBN
9783662533482
In diesem Band des zweiteiligen Lehrbuchs zur Linearen Algebra werden zum einen verschiedene Anwendungen zu den Themen des ersten Bandes vertieft: es wird die Lösungstheorie linearer gewöhnlicher Differentialgleichungen mit konstanten Koeffizienten vorgestellt. Zum anderen werden die formalen Konzepte der linearen Algebra vertieft. Neben Quotientenkonstruktionen und der Theorie der symmetrischen und antisymmetrischen Bilinearformen wird vor allem die multilineare Algebra zusammen mit Tensorprodukten im Detail besprochen.
Wie schon im ersten Band ist der Zugang dieses Lehrbuchs eher klassisch: Die formalen Aspekte der wissenschaftlichen Mathematik werden stark betont. Noch stärker als im ersten Band wird jedoch gerade aus den Anwendungen in der mathematischen Physik wichtige Motivation für das Vorgehen gewonnen. Auf diese Weise ist das Lehrbuch sowohl für Studierende der Mathematik als auch der Physik geeignet. Insgesamt über 100 umfangreiche Übungen erleichtern das Selbststudium.
Der Inhalt von Band 2:
- Lineare Differentialgleichungen und die Exponentialabbildung
- Quotienten
- Multilineare Abbildungen und Tensorprodukte
- Bilinearformen und Quadriken
Der Autor
Stefan Waldmann studierte Physik in Freiburg, wo er 1999 promovierte
und 2003 habilitierte. Nach Professuren für Differentialgeometrie in
Leuven und harmonische Analysis in Erlangen ist er nun am Institut für
Mathematik der Universität Würzburg Inhaber des Lehrstuhls für Mathematische Physik.