Notes on Coxeter Transformations and the McKay Correspondence (e-bog) af Stekolshchik, Rafael
Stekolshchik, Rafael (forfatter)

Notes on Coxeter Transformations and the McKay Correspondence e-bog

875,33 DKK (inkl. moms 1094,16 DKK)
One of the beautiful results in the representation theory of the finite groups is McKay's theorem on a correspondence between representations of the binary polyhedral group of SU(2) and vertices of an extended simply-laced Dynkin diagram. The Coxeter transformation is the main tool in the proof of the McKay correspondence, and is closely interrelated with the Cartan matrix and Poincar series. T...
E-bog 875,33 DKK
Forfattere Stekolshchik, Rafael (forfatter)
Forlag Springer
Udgivet 18 januar 2008
Genrer PBF
Sprog English
Format pdf
Beskyttelse LCP
ISBN 9783540773993
One of the beautiful results in the representation theory of the finite groups is McKay's theorem on a correspondence between representations of the binary polyhedral group of SU(2) and vertices of an extended simply-laced Dynkin diagram. The Coxeter transformation is the main tool in the proof of the McKay correspondence, and is closely interrelated with the Cartan matrix and Poincar series. The Coxeter functors constructed by Bernstein, Gelfand and Ponomarev plays a distinguished role in the representation theory of quivers. On these pages, the ideas and formulas due to J. N. Bernstein, I. M. Gelfand and V. A. Ponomarev, H.S.M. Coxeter, V. Dlab and C.M. Ringel, V. Kac, J. McKay, T.A. Springer, B. Kostant, P. Slodowy, R. Steinberg, W. Ebeling and several other authors, as well as the author and his colleagues from Subbotin's seminar, are presented in detail. Several proofs seem to be new.