Vibrations of mechanical systems with regular structure e-bog
1240,73 DKK
(inkl. moms 1550,91 DKK)
In this book, regular structures are de ned as periodic structures consisting of repeated elements (translational symmetry) as well as structures with a geom- ric symmetry. Regular structures have for a long time been attracting the attention of scientists by the extraordinary beauty of their forms. They have been studied in many areas of science: chemistry, physics, biology, etc. Systems with ...
E-bog
1240,73 DKK
Forlag
Springer
Udgivet
5 august 2010
Genrer
PBG
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9783642031267
In this book, regular structures are de ned as periodic structures consisting of repeated elements (translational symmetry) as well as structures with a geom- ric symmetry. Regular structures have for a long time been attracting the attention of scientists by the extraordinary beauty of their forms. They have been studied in many areas of science: chemistry, physics, biology, etc. Systems with geometric symmetry are used widely in many areas of engineering. The various kinds of bases under machines, cyclically repeated forms of stators, reduction gears, rotors with blades mounted on them, etc. represent regular structures. The study of real-life engineering structures faces considerable dif culties because they comprise a great number of working mechanisms that, in turn, consist of many different elastic subsystems and elements. The computational models of such systems represent a hierarchical structure and contain hundreds and thousands of parameters. The main problems in the analysis of such systems are the dim- sion reduction of model and revealing the dominant parameters that determine its dynamics and form its energy nucleus. The two most widely used approaches to the simulation of such systems are as follows: 1. Methods using lumped parameters models, i.e., a discretization of the original system and its representation as a system with lumped parameters [including nite-element method (FEM)]. 2. The use of idealized elements with distributed parameters and known analytical solutions for both the local elements and the subsystems.