Orthogonal Polynomials and Continued Fractions e-bog
1240,73 DKK
(inkl. moms 1550,91 DKK)
Continued fractions, studied since Ancient Greece, only became a powerful tool in the eighteenth century, in the hands of the great mathematician Euler. This book tells how Euler introduced the idea of orthogonal polynomials and combined the two subjects, and how Brouncker's formula of 1655 can be derived from Euler's efforts in Special Functions and Orthogonal Polynomials. The most interesting...
E-bog
1240,73 DKK
Forlag
Cambridge University Press
Udgivet
4 april 2011
Genrer
PBH
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9780511838378
Continued fractions, studied since Ancient Greece, only became a powerful tool in the eighteenth century, in the hands of the great mathematician Euler. This book tells how Euler introduced the idea of orthogonal polynomials and combined the two subjects, and how Brouncker's formula of 1655 can be derived from Euler's efforts in Special Functions and Orthogonal Polynomials. The most interesting applications of this work are discussed, including the great Markoff's Theorem on the Lagrange spectrum, Abel's Theorem on integration in finite terms, Chebyshev's Theory of Orthogonal Polynomials, and very recent advances in Orthogonal Polynomials on the unit circle. As continued fractions become more important again, in part due to their use in finding algorithms in approximation theory, this timely book revives the approach of Wallis, Brouncker and Euler and illustrates the continuing significance of their influence. A translation of Euler's famous paper 'Continued Fractions, Observation' is included as an Addendum.