Symplectic Geometry And Mirror Symmetry - Proceedings Of The 4th Kias Annual International Conference e-bog
583,01 DKK
(inkl. moms 728,76 DKK)
In 1993, M Kontsevich proposed a conceptual framework for explaining the phenomenon of mirror symmetry. Mirror symmetry had been discovered by physicists in string theory as a duality between families of three-dimensional Calabi-Yau manifolds. Kontsevich's proposal uses Fukaya's construction of the Ainfinity-category of Lagrangian submanifolds on the symplectic side and the derived category of ...
E-bog
583,01 DKK
Forlag
World Scientific
Udgivet
19 november 2001
Længde
508 sider
Genrer
PBH
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9789814490405
In 1993, M Kontsevich proposed a conceptual framework for explaining the phenomenon of mirror symmetry. Mirror symmetry had been discovered by physicists in string theory as a duality between families of three-dimensional Calabi-Yau manifolds. Kontsevich's proposal uses Fukaya's construction of the Ainfinity-category of Lagrangian submanifolds on the symplectic side and the derived category of coherent sheaves on the complex side. The theory of mirror symmetry was further enhanced by physicists in the language of D-branes and also by Strominger-Yau-Zaslow in the geometric set-up of (special) Lagrangian torus fibrations. It rapidly expanded its scope across from geometry, topology, algebra to physics.In this volume, leading experts in the field explore recent developments in relation to homological mirror symmetry, Floer theory, D-branes and Gromov-Witten invariants. Kontsevich-Soibelman describe their solution to the mirror conjecture on the abelian variety based on the deformation theory of Ainfinity-categories, and Ohta describes recent work on the Lagrangian intersection Floer theory by Fukaya-Oh-Ohta-Ono which takes an important step towards a rigorous construction of the Ainfinity-category. There follow a number of contributions on the homological mirror symmetry, D-branes and the Gromov-Witten invariants, e.g. Getzler shows how the Toda conjecture follows from recent work of Givental, Okounkov and Pandharipande. This volume provides a timely presentation of the important developments of recent years in this rapidly growing field.