From Bessel To Multi-index Mittag-leffler Functions: Enumerable Families, Series In Them And Convergence e-bog
619,55 DKK
(inkl. moms 774,44 DKK)
Bessel and Mittag-Leffler functions are prominent within mathematical and scientific fields due to increasing interest in non-conventional models within applied mathematics. Since the analytical solutions of many differential and integral equations of arbitrary order can be written as series of special functions of fractional calculus, they are now unavoidable tools for handling various mathema...
E-bog
619,55 DKK
Udgivet
25 august 2016
Længde
228 sider
Genrer
PBK
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9781786340900
Bessel and Mittag-Leffler functions are prominent within mathematical and scientific fields due to increasing interest in non-conventional models within applied mathematics. Since the analytical solutions of many differential and integral equations of arbitrary order can be written as series of special functions of fractional calculus, they are now unavoidable tools for handling various mathematical models of integer or fractional order. From Bessel to Multi-Index Mittag-Leffler Functions analyzes this through the study of enumerable families of different classes of special functions.Enumerable families are considered and the convergence of series is investigated. Providing a unified approach to the classical power series, analogues of the classical results for the power series are obtained, and the conclusion is that each of the considered series has a similar convergence behavior to a power series. Also studied are various properties of the Bessel and Mittag-Leffler functions and their generalizations, including estimations, asymptotic formulae, fractional differentiation and integration operators.