Metric Structures in Differential Geometry e-bog
509,93 DKK
(inkl. moms 637,41 DKK)
This text is an elementary introduction to differential geometry. Although it was written for a graduate-level audience, the only requisite is a solid back- ground in calculus, linear algebra, and basic point-set topology. The first chapter covers the fundamentals of differentiable manifolds that are the bread and butter of differential geometry. All the usual topics are cov- ered, culminating ...
E-bog
509,93 DKK
Forlag
Springer
Udgivet
23 august 2012
Genrer
PBK
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9780387218267
This text is an elementary introduction to differential geometry. Although it was written for a graduate-level audience, the only requisite is a solid back- ground in calculus, linear algebra, and basic point-set topology. The first chapter covers the fundamentals of differentiable manifolds that are the bread and butter of differential geometry. All the usual topics are cov- ered, culminating in Stokes' theorem together with some applications. The stu- dents' first contact with the subject can be overwhelming because of the wealth of abstract definitions involved, so examples have been stressed throughout. One concept, for instance, that students often find confusing is the definition of tangent vectors. They are first told that these are derivations on certain equiv- alence classes of functions, but later that the tangent space of ffi.n is "e;the same"e; n as ffi. . We have tried to keep these spaces separate and to carefully explain how a vector space E is canonically isomorphic to its tangent space at a point. This subtle distinction becomes essential when later discussing the vertical bundle of a given vector bundle.