Partition Method for a Power Series Expansion e-bog
656,09 DKK
(inkl. moms 820,11 DKK)
The Partition Method for a Power Series Expansion: Theory and Applications explores how the method known as 'the partition method for a power series expansion', which was developed by the author, can be applied to a host of previously intractable problems in mathematics and physics. In particular, this book describes how the method can be used to determine the Bernoulli, cosecant, and reciproc...
E-bog
656,09 DKK
Forlag
Academic Press
Udgivet
19 januar 2017
Længde
322 sider
Genrer
PBK
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9780128045114
The Partition Method for a Power Series Expansion: Theory and Applications explores how the method known as 'the partition method for a power series expansion', which was developed by the author, can be applied to a host of previously intractable problems in mathematics and physics. In particular, this book describes how the method can be used to determine the Bernoulli, cosecant, and reciprocal logarithm numbers, which appear as the coefficients of the resulting power series expansions, then also extending the method to more complicated situations where the coefficients become polynomials or mathematical functions. From these examples, a general theory for the method is presented, which enables a programming methodology to be established. Finally, the programming techniques of previous chapters are used to derive power series expansions for complex generating functions arising in the theory of partitions and in lattice models of statistical mechanics. Explains the partition method by presenting elementary applications involving the Bernoulli, cosecant, and reciprocal logarithm numbers Compares generating partitions via the BRCP algorithm with the standard lexicographic approaches Describes how to program the partition method for a power series expansion and the BRCP algorithm