Test Configurations, Stabilities and Canonical Kahler Metrics e-bog
509,93 DKK
(inkl. moms 637,41 DKK)
The Yau-Tian-Donaldson conjecture for anti-canonical polarization was recently solved affirmatively by Chen-Donaldson-Sun and Tian. However, this conjecture is still open for general polarizations or more generally in extremal Kahler cases. In this book, the unsolved cases of the conjecture will be discussed.It will be shown that the problem is closely related to the geometry of moduli spaces o...
E-bog
509,93 DKK
Forlag
Springer
Udgivet
25 marts 2021
Genrer
PBK
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9789811605000
The Yau-Tian-Donaldson conjecture for anti-canonical polarization was recently solved affirmatively by Chen-Donaldson-Sun and Tian. However, this conjecture is still open for general polarizations or more generally in extremal Kahler cases. In this book, the unsolved cases of the conjecture will be discussed.It will be shown that the problem is closely related to the geometry of moduli spaces of test configurations for polarized algebraic manifolds. Another important tool in our approach is the Chow norm introduced by Zhang. This is closely related to Ding's functional, and plays a crucial role in our differential geometric study of stability. By discussing the Chow norm from various points of view, we shall make a systematic study of the existence problem of extremal Kahler metrics.