Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems (e-bog) af -
Omnes, Pascal (redaktør)

Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems e-bog

1240,73 DKK (inkl. moms 1550,91 DKK)
This book is the second volume of proceedings of the 8th conference on &quote;Finite Volumes for Complex Applications&quote; (Lille, June 2017). It includes reviewed contributions reporting successful applications in the fields of fluid dynamics, computational geosciences, structural analysis, nuclear physics, semiconductor theory and other topics.The finite volume method in its various forms i...
E-bog 1240,73 DKK
Forfattere Omnes, Pascal (redaktør)
Forlag Springer
Udgivet 22 maj 2017
Genrer PBKS
Sprog English
Format epub
Beskyttelse LCP
ISBN 9783319573946
This book is the second volume of proceedings of the 8th conference on "e;Finite Volumes for Complex Applications"e; (Lille, June 2017). It includes reviewed contributions reporting successful applications in the fields of fluid dynamics, computational geosciences, structural analysis, nuclear physics, semiconductor theory and other topics.The finite volume method in its various forms is a space discretization technique for partial differential equations based on the fundamental physical principle of conservation, and recent decades have brought significant advances in the theoretical understanding of the method. Many finite volume methods preserve further qualitative or asymptotic properties, including maximum principles, dissipativity, monotone decay of free energy, and asymptotic stability. Due to these properties, finite volume methods belong to the wider class of compatible discretization methods, which preserve qualitative properties of continuous problems at the discrete level. This structural approach to the discretization of partial differential equations becomes particularly important for multiphysics and multiscale applications.The book is useful for researchers, PhD and master's level students in numerical analysis, scientific computing and related fields such as partial differential equations, as well as for engineers working in numerical modeling and simulations.