Representation Learning (e-bog) af Robnik-Sikonja, Marko
Robnik-Sikonja, Marko (forfatter)

Representation Learning e-bog

1167,65 DKK (inkl. moms 1459,56 DKK)
This monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data transformation techniques that convert data of different modalities and complexity, including texts, graphs, and relations, into compact tabular representations, which effectively capture their semantic properties and relations. The monogr...
E-bog 1167,65 DKK
Forfattere Robnik-Sikonja, Marko (forfatter)
Forlag Springer
Udgivet 10 juli 2021
Genrer PBKS
Sprog English
Format epub
Beskyttelse LCP
ISBN 9783030688172
This monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data transformation techniques that convert data of different modalities and complexity, including texts, graphs, and relations, into compact tabular representations, which effectively capture their semantic properties and relations. The monograph focuses on (i) propositionalization approaches, established in relational learning and inductive logic programming, and (ii) embedding approaches, which have gained popularity with recent advances in deep learning. The authors establish a unifying perspective on representation learning techniques developed in these various areas of modern data science, enabling the reader to understand the common underlying principles and to gain insight using selected examples and sample Python code. The monograph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.