Algebraic Geometry I: Schemes (e-bog) af Wedhorn, Torsten
Wedhorn, Torsten (forfatter)

Algebraic Geometry I: Schemes e-bog

656,09 DKK (inkl. moms 820,11 DKK)
Algebraic geometry has its origin in the study of systems of polynomial equations f (x ,. . . ,x )=0, 1 1 n . . . f (x ,. . . ,x )=0. r 1 n Here the f ? k[X ,. . . ,X ] are polynomials in n variables with coe?cients in a ?eld k. i 1 n n ThesetofsolutionsisasubsetV(f ,. . . ,f)ofk . Polynomialequationsareomnipresent 1 r inandoutsidemathematics,andhavebeenstudiedsinceantiquity. Thefocusofalgebrai...
E-bog 656,09 DKK
Forfattere Wedhorn, Torsten (forfatter)
Udgivet 27 juli 2020
Genrer PBMW
Sprog English
Format pdf
Beskyttelse LCP
ISBN 9783658307332
Algebraic geometry has its origin in the study of systems of polynomial equations f (x ,. . . ,x )=0, 1 1 n . . . f (x ,. . . ,x )=0. r 1 n Here the f ? k[X ,. . . ,X ] are polynomials in n variables with coe?cients in a ?eld k. i 1 n n ThesetofsolutionsisasubsetV(f ,. . . ,f)ofk . Polynomialequationsareomnipresent 1 r inandoutsidemathematics,andhavebeenstudiedsinceantiquity. Thefocusofalgebraic geometry is studying the geometric structure of their solution sets. n If the polynomials f are linear, then V(f ,. . . ,f ) is a subvector space of k. Its i 1 r "e;size"e; is measured by its dimension and it can be described as the kernel of the linear n r map k ? k , x=(x ,. . . ,x ) ? (f (x),. . . ,f (x)). 1 n 1 r For arbitrary polynomials, V(f ,. . . ,f ) is in general not a subvector space. To study 1 r it, one uses the close connection of geometry and algebra which is a key property of algebraic geometry, and whose ?rst manifestation is the following: If g = g f +. . . g f 1 1 r r is a linear combination of the f (with coe?cients g ? k[T ,. . . ,T ]), then we have i i 1 n V(f ,. . . ,f)= V(g,f ,. . . ,f ). Thus the set of solutions depends only on the ideal 1 r 1 r a? k[T ,. . . ,T ] generated by the f .