Weakly Semialgebraic Spaces e-bog
260,50 DKK
(inkl. moms 325,62 DKK)
The book is the second part of an intended three-volume treatise on semialgebraic topology over an arbitrary real closed field R. In the first volume (LNM 1173) the category LSA(R) or regular paracompact locally semialgebraic spaces over R was studied. The category WSA(R) of weakly semialgebraic spaces over R - the focus of this new volume - contains LSA(R) as a full subcategory. The book provi...
E-bog
260,50 DKK
Forlag
Springer
Udgivet
14 november 2006
Genrer
PBMW
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9783540460893
The book is the second part of an intended three-volume treatise on semialgebraic topology over an arbitrary real closed field R. In the first volume (LNM 1173) the category LSA(R) or regular paracompact locally semialgebraic spaces over R was studied. The category WSA(R) of weakly semialgebraic spaces over R - the focus of this new volume - contains LSA(R) as a full subcategory. The book provides ample evidence that WSA(R) is "e;the"e; right cadre to understand homotopy and homology of semialgebraic sets, while LSA(R) seems to be more natural and beautiful from a geometric angle. The semialgebraic sets appear in LSA(R) and WSA(R) as the full subcategory SA(R) of affine semialgebraic spaces. The theory is new although it borrows from algebraic topology. A highlight is the proof that every generalized topological (co)homology theory has a counterpart in WSA(R) with in some sense "e;the same"e;, or even better, properties as the topological theory. Thus we may speak of ordinary (=singular) homology groups, orthogonal, unitary or symplectic K-groups, and various sorts of cobordism groups of a semialgebraic set over R. If R is not archimedean then it seems difficult to develop a satisfactory theory of these groups within the category of semialgebraic sets over R: with weakly semialgebraic spaces this becomes easy. It remains for us to interpret the elements of these groups in geometric terms: this is done here for ordinary (co)homology.