Functional Gaussian Approximation for Dependent Structures (e-bog) af Utev, Sergey
Utev, Sergey (forfatter)

Functional Gaussian Approximation for Dependent Structures e-bog

1021,49 DKK (inkl. moms 1276,86 DKK)
Functional Gaussian Approximation for Dependent Structures develops and analyses mathematical models for phenomena that evolve in time and influence each another. It provides a better understanding of the structure and asymptotic behaviour of stochastic processes. Two approaches are taken. Firstly, the authors present tools for dealing with the dependent structures used to obtain normal appro...
E-bog 1021,49 DKK
Forfattere Utev, Sergey (forfatter)
Forlag OUP Oxford
Udgivet 14 februar 2019
Længde 496 sider
Genrer Probability and statistics
Sprog English
Format pdf
Beskyttelse LCP
ISBN 9780192561862
Functional Gaussian Approximation for Dependent Structures develops and analyses mathematical models for phenomena that evolve in time and influence each another. It provides a better understanding of the structure and asymptotic behaviour of stochastic processes. Two approaches are taken. Firstly, the authors present tools for dealing with the dependent structures used to obtain normal approximations. Secondly, they apply normal approximations to various examples. The main tools consist of inequalities for dependent sequences of random variables, leading to limit theorems, including the functional central limit theorem and functional moderate deviation principle. The results point out large classes of dependent random variables which satisfyinvariance principles, making possible the statistical study of data coming from stochastic processes both with short and long memory. The dependence structures considered throughout the book include the traditional mixing structures, martingale-like structures, and weakly negatively dependent structures, which link the notion of mixing to the notions of association and negative dependence. Several applications are carefully selected to exhibit the importance of the theoretical results. They include random walks in random scenery and determinantal processes. In addition, due to their importance in analysing new data ineconomics, linear processes with dependent innovations will also be considered and analysed.