Linear and Graphical Models e-bog
875,33 DKK
(inkl. moms 1094,16 DKK)
In the last decade, graphical models have become increasingly popular as a statistical tool. This book is the first which provides an account of graphical models for multivariate complex normal distributions. Beginning with an introduction to the multivariate complex normal distribution, the authors develop the marginal and conditional distributions of random vectors and matrices. Then they int...
E-bog
875,33 DKK
Forlag
Springer
Udgivet
6 december 2012
Genrer
Probability and statistics
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9781461242406
In the last decade, graphical models have become increasingly popular as a statistical tool. This book is the first which provides an account of graphical models for multivariate complex normal distributions. Beginning with an introduction to the multivariate complex normal distribution, the authors develop the marginal and conditional distributions of random vectors and matrices. Then they introduce complex MANOVA models and parameter estimation and hypothesis testing for these models. After introducing undirected graphs, they then develop the theory of complex normal graphical models including the maximum likelihood estimation of the concentration matrix and hypothesis testing of conditional independence.