Matrix Algebra From a Statistician's Perspective (e-bog) af Harville, David A.
Harville, David A. (forfatter)

Matrix Algebra From a Statistician's Perspective e-bog

802,25 DKK (inkl. moms 1002,81 DKK)
Matrix algebra plays a very important role in statistics and in many other dis- plines. In many areas of statistics, it has become routine to use matrix algebra in thepresentationandthederivationorveri?cationofresults. Onesuchareaislinear statistical models; another is multivariate analysis. In these areas, a knowledge of matrix algebra isneeded in applying important concepts, as well as instud...
E-bog 802,25 DKK
Forfattere Harville, David A. (forfatter)
Forlag Springer
Udgivet 18 april 2006
Genrer Probability and statistics
Sprog English
Format pdf
Beskyttelse LCP
ISBN 9780387226774
Matrix algebra plays a very important role in statistics and in many other dis- plines. In many areas of statistics, it has become routine to use matrix algebra in thepresentationandthederivationorveri?cationofresults. Onesuchareaislinear statistical models; another is multivariate analysis. In these areas, a knowledge of matrix algebra isneeded in applying important concepts, as well as instudying the underlying theory, and is even needed to use various software packages (if they are to be used with con?dence and competence). On many occasions, I have taught graduate-level courses in linear statistical models. Typically, the prerequisites for such courses include an introductory (- dergraduate) course in matrix (or linear) algebra. Also typically, the preparation provided by this prerequisite course is not fully adequate. There are several r- sons for this. The level of abstraction or generality in the matrix (or linear) algebra course may have been so high that it did not lead to a "e;working knowledge"e; of the subject, or, at the other extreme, the course may have emphasized computations at the expense of fundamental concepts. Further, the content of introductory courses on matrix (or linear) algebra varies widely from institution to institution and from instructor to instructor. Topics such as quadratic forms, partitioned matrices, and generalized inverses that play an important role in the study of linear statistical models may be covered inadequately if at all.