Modélisation et statistique spatiales (e-bog) af Guyon, Xavier
Guyon, Xavier (forfatter)

Modélisation et statistique spatiales e-bog

343,95 DKK (inkl. moms 429,94 DKK)
La statistique spatiale connaît un développement important du fait de son utilisation dans de nombreux domaines : sciences de la terre, environnement et climatologie, épidémiologie, économétrie, analyse d’image, etc… Ce livre présente les principaux modèles spatiaux utilisés ainsi que leur statistique pour les trois types de données : géostatistiques (observation sur un domaine continu), donnée...
E-bog 343,95 DKK
Forfattere Guyon, Xavier (forfatter)
Forlag Springer
Udgivet 7 juni 2008
Genrer Probability and statistics
Sprog French
Format pdf
Beskyttelse LCP
ISBN 9783540792260

La statistique spatiale connaît un développement important du fait de son utilisation dans de nombreux domaines : sciences de la terre, environnement et climatologie, épidémiologie, économétrie, analyse d’image, etc… Ce livre présente les principaux modèles spatiaux utilisés ainsi que leur statistique pour les trois types de données : géostatistiques (observation sur un domaine continu), données sur réseau discret, données ponctuelles. L’objectif est présenter de façon concise mais mathématiquement complète les modèles les plus classiques (second ordre et variogramme ; modèle latticiel et champ de Gibbs-Markov ; processus ponctuels) ainsi que leur simulation par algorithme MCMC. Vient ensuite la présentation des outils statistiques utiles à leur étude. De nombreux exemples utilisant R illustrent les sujets abordés. Chaque chapitre est complété par des exercices et une annexe présente brièvement les outils probabilistes et statistiques utiles à la statistique de champs aléatoires.

In recent years spatial statistics has been widely applied in diverse areas such as climatology, ecology, economy, epidemiology, image analysis, etc. This volume illustrates the main spatial models and the current statistical methods for point-referenced, areal data and point pattern data with an emphasis on recent simulation techniques such as MCMC algorithms. The presentation is concise but mathematically rigorous and the proposed methods are illustrated using real data and the software R. Some exercises complete each chapter. The volume is accessible for senior undergraduate students, Ph.D. students in statistics, and experienced statisticians. Moreover researchers in the above mentioned areas will find it useful as a mathematically sound reference.