Mouvement brownien, martingales et calcul stochastique (e-bog) af Gall, Jean-Francois Le

Mouvement brownien, martingales et calcul stochastique e-bog

198,42 DKK (inkl. moms 248,02 DKK)
Cet ouvrage propose une approche concise mais complète de la théorie de l'intégrale stochastique dans le cadre général des semimartingales continues. Après une introduction au mouvement brownien et à ses principales propriétés, les martingales et les semimartingales continues sont présentées en détail avant la construction de l'intégrale stochastique. Les outils du calcul stochastique, incluant...
E-bog 198,42 DKK
Forfattere Gall, Jean-Francois Le (forfatter)
Forlag Springer
Udgivet 17 september 2012
Genrer Probability and statistics
Sprog French
Format pdf
Beskyttelse LCP
ISBN 9783642318986

Cet ouvrage propose une approche concise mais complète de la théorie de l'intégrale stochastique dans le cadre général des semimartingales continues. Après une introduction au mouvement brownien et à ses principales propriétés, les martingales et les semimartingales continues sont présentées en détail avant la construction de l'intégrale stochastique. Les outils du calcul stochastique, incluant la formule d'Itô, le théorème d'arrêt et de nombreuses applications, sont traités de manière rigoureuse. Le livre contient aussi un chapitre sur les processus de Markov et un autre sur les équations différentielles stochastiques, avec une preuve détaillée des propriétés markoviennes des solutions. De nombreux exercices permettent au lecteur de se familiariser avec les techniques du calcul stochastique.

This book offers a rigorous and self-contained approach to the theory of stochastic integration and stochastic calculus within the general framework of continuous semimartingales. The main tools of stochastic calculus, including Itô's formula, the optional stopping theorem and the Girsanov theorem are treated in detail including many important applications. Two chapters are devoted to general Markov processes and to stochastic differential equations, with a complete derivation of Markovian properties of solutions in the Lipschitz case. Numerous exercises help the reader to get acquainted with the techniques of stochastic calculus.