Process Optimization e-bog
436,85 DKK
(inkl. moms 546,06 DKK)
PROCESS OPTIMIZATION: A Statistical Approach is a textbook for a course in experimental optimization techniques for industrial production processes and other "e;noisy"e; systems where the main emphasis is process optimization. The book can also be used as a reference text by Industrial, Quality and Process Engineers and Applied Statisticians working in industry, in particular, in semico...
E-bog
436,85 DKK
Forlag
Springer
Udgivet
14 september 2007
Genrer
Probability and statistics
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9780387714356
PROCESS OPTIMIZATION: A Statistical Approach is a textbook for a course in experimental optimization techniques for industrial production processes and other "e;noisy"e; systems where the main emphasis is process optimization. The book can also be used as a reference text by Industrial, Quality and Process Engineers and Applied Statisticians working in industry, in particular, in semiconductor/electronics manufacturing and in biotech manufacturing industries.The major features of PROCESS OPTIMIZATION: A Statistical Approach are: It provides a complete exposition of mainstream experimental design techniques, including designs for first and second order models, response surface and optimal designs;Discusses mainstream response surface method in detail, including unconstrained and constrained (i.e., ridge analysis and dual and multiple response) approaches;Includes an extensive discussion of Robust Parameter Design (RPD) problems, including experimental design issues such as Split Plot designs and recent optimization approaches used for RPD;Presents a detailed treatment of Bayesian Optimization approaches based on experimental data (including an introduction to Bayesian inference), including single and multiple response optimization and model robust optimization;Provides an in-depth presentation of the statistical issues that arise in optimization problems, including confidence regions on the optimal settings of a process, stopping rules in experimental optimization and more;Contains a discussion on robust optimization methods as used in mathematical programming and their application in response surface optimization;Offers software programs written in MATLAB and MAPLE to implement Bayesian and frequentist process optimization methods;Provides an introduction to the optimization of computer and simulation experiments including and introduction to stochastic approximation and stochastic perturbation stochastic approximation (SPSA) methods;Includes an introduction to Kriging methods and experimental design for computer experiments;Provides extensive appendices on Linear Regression, ANOVA, and Optimization Results.