Advances in Imaging and Electron Physics (e-bog) af -

Advances in Imaging and Electron Physics e-bog

2190,77 DKK (inkl. moms 2738,46 DKK)
Advances in Imaging and Electron Physics, Volume 199, the latest release in a series that merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy features extended articles on the physics of electron devices (especially semiconductor devices). Specific topics include discussions on Micro-XRF in scanning electron microscopes, ...
E-bog 2190,77 DKK
Forfattere
Udgivet 15 marts 2017
Længde 324 sider
Genrer PDN
Sprog English
Format pdf
Beskyttelse LCP
ISBN 9780128121948
Advances in Imaging and Electron Physics, Volume 199, the latest release in a series that merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy features extended articles on the physics of electron devices (especially semiconductor devices). Specific topics include discussions on Micro-XRF in scanning electron microscopes, and an interesting take on the variational approach for simulation of equilibrium ion distributions in ion traps regarding Coulomb interaction, amongst others. Users will find a comprehensive resource on the most important aspects of particle optics at high and low energies, microlithography, image science and digital image processing. In addition, topics of interest, including electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains are presented and discussed. Contains contributions from leading authorities on the subject matter Informs and updates on all the latest developments in the field of imaging and electron physics Provides practitioners interested in microscopy, optics, image processing, mathematical morphology, electromagnetic fields, electron, and ion emission with a valuable resource Features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, and digital image processing