Source/Drain Engineering of Nanoscale Germanium-based MOS Devices e-bog
436,85 DKK
(inkl. moms 546,06 DKK)
This book mainly focuses on reducing the high parasitic resistance in the source/drain of germanium nMOSFET. With adopting of the Implantation After Germanide (IAG) technique, P and Sb co-implantation technique and Multiple Implantation and Multiple Annealing (MIMA) technique, the electron Schottky barrier height of NiGe/Ge contact is modulated to 0.1eV, the thermal stability of NiGe is i...
E-bog
436,85 DKK
Forlag
Springer
Udgivet
24 marts 2016
Genrer
PDT
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9783662496831
This book mainly focuses on reducing the high parasitic resistance in the source/drain of germanium nMOSFET. With adopting of the Implantation After Germanide (IAG) technique, P and Sb co-implantation technique and Multiple Implantation and Multiple Annealing (MIMA) technique, the electron Schottky barrier height of NiGe/Ge contact is modulated to 0.1eV, the thermal stability of NiGe is improved to 600 and the contact resistivity of metal/n-Ge contact is drastically reduced to 3.8cm2, respectively. Besides, a reduced source/drain parasitic resistance is demonstrated in the fabricated Ge nMOSFET. Readers will find useful information about the source/drain engineering technique for high-performance CMOS devices at future technology node.