Application of Optical Fourier Transforms (e-bog) af -
Stark, Henry (redaktør)

Application of Optical Fourier Transforms e-bog

436,85 DKK (inkl. moms 546,06 DKK)
Applications of Optical Fourier Transforms is a 12-chapter text that discusses the significant achievements in Fourier optics. The opening chapters discuss the Fourier transform property of a lens, the theory and applications of complex spatial filters, and their application to signal detection, character recognition, water pollution monitoring, and other pattern recognition problems. These t...
E-bog 436,85 DKK
Forfattere Stark, Henry (redaktør)
Udgivet 2 december 2012
Længde 564 sider
Genrer PHJ
Sprog English
Format pdf
Beskyttelse LCP
ISBN 9780323145930
Applications of Optical Fourier Transforms is a 12-chapter text that discusses the significant achievements in Fourier optics. The opening chapters discuss the Fourier transform property of a lens, the theory and applications of complex spatial filters, and their application to signal detection, character recognition, water pollution monitoring, and other pattern recognition problems. These topics are followed by a computation of the statistical characteristics of the Fourier irradiance patterns and the hybrid systems that combine the best of optics, analog electronics, and digital computers to solve problems. The subsequent chapters examine the pulse-Doppler and chirp signals, the significance of signal-to-noise power spectrum in the information content measurement of photographic film and in image quality determinations. This text also considers the application of nonlinear systems and their components to Fourier optics. The discussions then shift to the application of Fourier methods to the study of spatial information transmission through the human visual system, as well as the application of coherent techniques to vision research. The concluding chapters deal with the well-known pattern recognition problems related to the digital signal processing community. These chapters also look into a general theoretical model of light field propagation from input to output. This book will be of value to optical scientists and vision researchers.