From Micro To Macro Quantum Systems: A Unified Formalism With Superselection Rules And Its Applications e-bog
583,01 DKK
(inkl. moms 728,76 DKK)
Traditional quantum theory has a very rigid structure, making it difficult to accommodate new properties emerging from novel systems. This book presents a flexible and unified theory for physical systems, from micro and macro quantum to classical. This is achieved by incorporating superselection rules and maximal symmetric operators into the theory. The resulting theory is applicable to classic...
E-bog
583,01 DKK
Forlag
Imperial College Press
Udgivet
3 marts 2006
Længde
708 sider
Genrer
PHQ
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9781783260010
Traditional quantum theory has a very rigid structure, making it difficult to accommodate new properties emerging from novel systems. This book presents a flexible and unified theory for physical systems, from micro and macro quantum to classical. This is achieved by incorporating superselection rules and maximal symmetric operators into the theory. The resulting theory is applicable to classical, microscopic quantum and non-orthodox mixed quantum systems of which macroscopic quantum systems are examples. A unified formalism also greatly facilitates the discussion of interactions between these systems. A scheme of quantization by parts is introduced, based on the mathematics of selfadjoint and maximal symmetric extensions of symmetric operators, to describe point interactions. The results are applied to treat superconducting quantum circuits in various configurations.This book also discusses various topics of interest such as the asymptotic treatment of quantum state preparation and quantum measurement, local observables and local values, Schrodinger's cat states in superconducting systems, and a path space formulation of quantum mechanics.This self-contained book is complete with a review of relevant geometric and operator theories, for example, vector fields and operators, symmetric operators and their maximal symmetric extensions, direct integrals of Hilbert spaces and operators.