Path Integrals, Hyperbolic Spaces And Selberg Trace Formulae (2nd Edition) (e-bog) af Christian Grosche, Grosche

Path Integrals, Hyperbolic Spaces And Selberg Trace Formulae (2nd Edition) e-bog

359,43 DKK (inkl. moms 449,29 DKK)
In this second edition, a comprehensive review is given for path integration in two- and three-dimensional (homogeneous) spaces of constant and non-constant curvature, including an enumeration of all the corresponding coordinate systems which allow separation of variables in the Hamiltonian and in the path integral. The corresponding path integral solutions are presented as a tabulation. Propos...
E-bog 359,43 DKK
Forfattere Christian Grosche, Grosche (forfatter)
Udgivet 26 juli 2013
Længde 388 sider
Genrer Mathematical physics
Sprog English
Format pdf
Beskyttelse LCP
ISBN 9789814460095
In this second edition, a comprehensive review is given for path integration in two- and three-dimensional (homogeneous) spaces of constant and non-constant curvature, including an enumeration of all the corresponding coordinate systems which allow separation of variables in the Hamiltonian and in the path integral. The corresponding path integral solutions are presented as a tabulation. Proposals concerning interbasis expansions for spheroidal coordinate systems are also given. In particular, the cases of non-constant curvature Darboux spaces are new in this edition.The volume also contains results on the numerical study of the properties of several integrable billiard systems in compact domains (i.e. rectangles, parallelepipeds, circles and spheres) in two- and three-dimensional flat and hyperbolic spaces. In particular, the discussions of integrable billiards in circles and spheres (flat and hyperbolic spaces) and in three dimensions are new in comparison to the first edition.In addition, an overview is presented on some recent achievements in the theory of the Selberg trace formula on Riemann surfaces, its super generalization, their use in mathematical physics and string theory, and some further results derived from the Selberg (super-) trace formula.