Plate Deformation from Cradle to Grave (e-bog) af Nowacki, Andy
Nowacki, Andy (forfatter)

Plate Deformation from Cradle to Grave e-bog

875,33 DKK (inkl. moms 1094,16 DKK)
The Earth's rocky mantle convects to lose heat, which comes from the liquid iron core below. The mantle's interfaces - the core-mantle boundary, and the lithosphere - may hold the key to understanding mantle motion because of the seismic anisotropy present in these parts of the Earth. In this thesis, Andy Nowacki presents a precise but comprehensive review of the current state of the art in s...
E-bog 875,33 DKK
Forfattere Nowacki, Andy (forfatter)
Forlag Springer
Udgivet 14 december 2012
Genrer PHVG
Sprog English
Format pdf
Beskyttelse LCP
ISBN 9783642348426
The Earth's rocky mantle convects to lose heat, which comes from the liquid iron core below. The mantle's interfaces - the core-mantle boundary, and the lithosphere - may hold the key to understanding mantle motion because of the seismic anisotropy present in these parts of the Earth. In this thesis, Andy Nowacki presents a precise but comprehensive review of the current state of the art in studying flow with anisotropy, mineral physics and geodynamics. New measurements of shear wave anisotropy in the lowermost mantle and at mid-ocean ridges are used to constrain mechanisms of creep and melt extraction in the mantle. A model of global flow is used to predict anisotropy in the deep Earth, and novel methods to forward model shear wave splitting are described. Future studies of mantle flow must incorporate the understanding gained in this thesis. The thesis contains a substantive introduction to the structure of the Earth, seismic anisotropy in general and in the core-mantle boundary region, and mid-ocean ridge processes. It also describes novel methods for forward modelling and interpreting shear wave splitting data. Three chapters present timely research into dynamics at divergent plate boundaries and at the core-mantle boundary.