Crown Ethers and Analogous Compounds (e-bog) af -
Hiraoka, M. (redaktør)

Crown Ethers and Analogous Compounds e-bog

619,55 DKK (inkl. moms 774,44 DKK)
Since the discovery of crown ethers by Pedersen in 1967, several thousands of crown ethers and analogous compounds have been synthesized. Their specific characteristics have been investigated and a variety of applications developed. These developments have led to new fields of chemistry called host-guest chemistry and supramolecular chemistry. This book presents the state-of-the-art of the chem...
E-bog 619,55 DKK
Forfattere Hiraoka, M. (redaktør)
Udgivet 4 maj 2016
Genrer Analytical chemistry
Sprog English
Format pdf
Beskyttelse LCP
ISBN 9781483290874
Since the discovery of crown ethers by Pedersen in 1967, several thousands of crown ethers and analogous compounds have been synthesized. Their specific characteristics have been investigated and a variety of applications developed. These developments have led to new fields of chemistry called host-guest chemistry and supramolecular chemistry. This book presents the state-of-the-art of the chemistry of crown ethers and analogous compounds. The first chapter provides an orientation in the new fields of chemistry. Chapter 2 reviews advances in synthetic procedures for crown ethers and analogous compounds including azacrown ethers, thiacrown ethers, functionalized crown ethers, cryptands and others. The focus of chapter 3 is on the concept and synthetic strategies for the molecular design of new crown compounds. Chapters 4-7 are concerned with noteworthy topics in the applications of crown compounds. Chapter 4 deals with the application to ion-selective electrodes and liquid chromatography, both of which are the most important targets in the analytical application of crown compounds. One major application of crown ethers is the design and syntheses of artificial molecules which can catalyze a useful synthetic reaction in an enzyme-mimetic reaction manner, through novel non-covalent complexes. The strategies for enzymatic modelling with crown ethers are covered in chapter 5, while chapter 6 presents the principle of amine-selective colour complexation and its application. In chapter 7 switched-on crown ethers that can respond to environmental stimuli are reviewed. The final chapter is devoted to a wide-ranging discussion of developments in macrocyclic polyamine chemistry. Unlike crown ethers, macrocyclic polyamines, bearing nitrogen donor atoms which belong to a soft base, form complexes with ions of transition metals and heavy metals which are classified as soft acids. Therefore, macrocyclic polyamines are expected to have very versatile applications. Scientists in chemistry, biochemistry, physical organic chemistry, pharmaceutical chemistry and industrial chemistry will find this book a helpful summary and a stimulating contribution to research in this specialized field of crown compounds.