Microbial Cell Factories Engineering for Production of Biomolecules e-bog
2190,77 DKK
(inkl. moms 2738,46 DKK)
Microbial Cell Factories Engineering for Production of Biomolecules presents a compilation of chapters written by eminent scientists worldwide. Sections cover major tools and technologies for DNA synthesis, design of biosynthetic pathways, synthetic biology tools, biosensors, cell-free systems, computer-aided design, OMICS tools, CRISPR/Cas systems, and many more. Although it is not easy to fin...
E-bog
2190,77 DKK
Forlag
Academic Press
Udgivet
13 februar 2021
Længde
488 sider
Genrer
Biology, life sciences
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9780128214787
Microbial Cell Factories Engineering for Production of Biomolecules presents a compilation of chapters written by eminent scientists worldwide. Sections cover major tools and technologies for DNA synthesis, design of biosynthetic pathways, synthetic biology tools, biosensors, cell-free systems, computer-aided design, OMICS tools, CRISPR/Cas systems, and many more. Although it is not easy to find relevant information collated in a single volume, the book covers the production of a wide range of biomolecules from several MCFs, including Escherichia coli, Bacillus subtilis, Pseudomonas putida, Streptomyces, Corynebacterium, Cyanobacteria, Saccharomyces cerevisiae, Pichia pastoris and Yarrowia lipolytica, and algae, among many others. This will be an excellent platform from which scientific knowledge can grow and widen in MCF engineering research for the production of biomolecules. Needless to say, the book is a valuable source of information not only for researchers designing cell factories, but also for students, metabolic engineers, synthetic biologists, genome engineers, industrialists, stakeholders and policymakers interested in harnessing the potential of MCFs in several fields. Offers basic understanding and a clear picture of various MCFs Explains several tools and technologies, including DNA synthesis, synthetic biology tools, genome editing, biosensors, computer-aided design, and OMICS tools, among others Harnesses the potential of engineered MCFs to produce a wide range of biomolecules for industrial, therapeutic, pharmaceutical, nutraceutical and biotechnological applications Highlights the advances, challenges, and future opportunities in designing MCFs