RNA-Based Technologies for Functional Genomics in Plants e-bog
1313,81 DKK
(inkl. moms 1642,26 DKK)
This book offers a unique and comprehensive overview of key RNA-based technologies, as well as their development and applications for the functional genomics of plant coding and non-coding genes. It focuses on the latest as well as classical RNA-based techniques used for studies on small RNAs, long non-coding RNAs and protein-coding genes. These techniques chiefly focus on target mimics (TMs) a...
E-bog
1313,81 DKK
Forlag
Springer
Udgivet
11 april 2021
Genrer
Life sciences: general issues
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9783030649944
This book offers a unique and comprehensive overview of key RNA-based technologies, as well as their development and applications for the functional genomics of plant coding and non-coding genes. It focuses on the latest as well as classical RNA-based techniques used for studies on small RNAs, long non-coding RNAs and protein-coding genes. These techniques chiefly focus on target mimics (TMs) and short tandem target mimics (STTMs) for small RNAs, and artificial microRNAs (amiRNAs), RNA interference (RNAi) and CRISPR/Cas for genes. Furthermore, the book discusses the latest trends in the field and various modifications of the above-mentioned approaches, and explores how these RNA-based technologies have been developed, applied and validated as essential technologies in plant functional genomics. RNA-based technologies, their mechanisms of action, their advantages and disadvantages, and insights into the further development and applications of these technologies in plants are discussed. These techniques will enable the users to functionally characterize genes and small RNAs through silencing, overexpression and editing. Gathering contributions by globally respected experts, the book will appeal to students, teachers and scientists in academia and industry who are interested in horticulture, genetics, pathology, entomology, physiology, molecular genetics and breeding, in vitro culture & genetic engineering, and functional genomics.