Sportinformatik e-bog
265,81 DKK
(inkl. moms 332,26 DKK)
In den letzten Jahren ist die Sportinformatik extrem gewachsen, vor allem weil immer mehr und neuere Daten verfügbar wurden. Sportinformatische Tools – sei es im Training zur Gegnervorbereitung, im Wettkampf oder in der Wissenschaft – sind im Sport heute auf unterschiedlichen Expertise-Ebenen unverzichtbar. Durch den Einsatz in den vier großen Anwendungsfeldern Vereine und Verbände, Wirtschaft,...
E-bog
265,81 DKK
Forlag
Springer Spektrum
Udgivet
14 oktober 2023
Genrer
Sports and Active outdoor recreation
Sprog
German
Format
epub
Beskyttelse
LCP
ISBN
9783662670262
In den letzten Jahren ist die Sportinformatik extrem gewachsen, vor allem weil immer mehr und neuere Daten verfügbar wurden. Sportinformatische Tools – sei es im Training zur Gegnervorbereitung, im Wettkampf oder in der Wissenschaft – sind im Sport heute auf unterschiedlichen Expertise-Ebenen unverzichtbar. Durch den Einsatz in den vier großen Anwendungsfeldern Vereine und Verbände, Wirtschaft, Wissenschaft sowie Medien ist ein völlig neuer Markt entstanden, der innerhalb der universitären Forschungs- und Lehraktivitäten zunehmend an Bedeutung gewinnt.
Dieses Lehrbuch möchte der mittlerweile breiten Vielfalt der Sportinformatik gerecht werden, indem mehr als 30 Autorinnen und Autoren aus ihrem Spezialgebiet berichten und neueste Erkenntnisse prägnant zusammenfassen. Das Werk gliedert sich in vier Hauptabschnitte: Datensätze, Modellbildung, Simulation sowie Datenanalyse. Neben Hintergründen zu Programmiersprachen und zur Visualisierung wird es von der Historie und einem Ausblick eingerahmt.
Studierende mit Bezug zur Sportwissenschaft erhalten einen umfassenden Einblick in die Sportinformatik, unterstützt durch ein didaktisch ausgefeiltes Konzept, das eine einfache Vermittlung der Lerninhalte ermöglicht. Zahlreiche digitale Übungsfragen untermauern den Lerneffekt und gewährleisten eine optimale Prüfungsvorbereitung. Für Fortgeschrittene bietet die vertiefende Diskussion von Zeitreihen Data Mining, künstlichen neuronalen Netzwerken, Convolution Kernel, Transfer Learning und Random Forests einen zusätzlichen Mehrwert.