Connectionist Robot Motion Planning (e-bog) af Mel, Bartlett
Mel, Bartlett (forfatter)

Connectionist Robot Motion Planning e-bog

192,41 DKK (inkl. moms 240,51 DKK)
Connectionist Robot Motion Planning: A Neurally-Inspired Approach to Visually-Guided Reaching is the third series in a cluster of books on robotics and related areas as part of the Perspectives in Artificial Intelligence Series. This series focuses on an experimental paradigm using the MURPHY system to tackle critical issues surrounding robot motion planning. MURPHY is a robot-camera system dev...
E-bog 192,41 DKK
Forfattere Mel, Bartlett (forfatter)
Udgivet 19 juli 2013
Længde 182 sider
Genrer Engineering: general
Sprog English
Format pdf
Beskyttelse LCP
ISBN 9780323141260
Connectionist Robot Motion Planning: A Neurally-Inspired Approach to Visually-Guided Reaching is the third series in a cluster of books on robotics and related areas as part of the Perspectives in Artificial Intelligence Series. This series focuses on an experimental paradigm using the MURPHY system to tackle critical issues surrounding robot motion planning. MURPHY is a robot-camera system developed to explore an approach to the kinematics of sensory-motor learning and control for a multi-link arm. Organized into eight chapters, this book describes the guiding of a multi-link arm to visual targets in a cluttered workspace. It primarily focuses on "e;ecological solutions that are relevant to the typical visually guided reaching behaviors of humans and animals in natural environments. Algorithms that work well in unmodeled workspaces whose effective layouts can change from moment to moment with movements of the eyes, head, limbs, and body are also presented. This book also examines the strengths of neurally inspired connectionist representations and the utility of heuristic search when good performance, even if suboptimal, is adequate for the task. The co-evolution of MURPHY's design with the brain, presumably in response to similar computational pressures, is described in the concluding chapters, specifically presenting the division of labor between programmed-feedforward and visual-feedback modes of limb control. Design engineers in the fields of biology, neurophysiology, and cognitive psychology will find this book of great value.