Polydimethylsiloxane: Structure and Applications (e-bog) af -
Philip N. Carlsen (redaktør)

Polydimethylsiloxane: Structure and Applications e-bog

2190,77 DKK (inkl. moms 2738,46 DKK)
Polydimethylsiloxane is a non-conducting, silicone-based elastomer that is of widespread interest due to its flexibility and ease of micromolding for the rapid prototyping of microdevices and systems. Polydimethylsiloxane: Structure and Applications discusses the results of electric investigations of onion-like carbon (OLC)/polydimethysiloxane composites addressing very wide frequency and tempe...
E-bog 2190,77 DKK
Forfattere Philip N. Carlsen (redaktør)
Forlag Nova
Udgivet 30 marts 2020
Længde 238 sider
Genrer Plastics and polymers
Sprog English
Format pdf
Beskyttelse LCP
ISBN 9781536176117
Polydimethylsiloxane is a non-conducting, silicone-based elastomer that is of widespread interest due to its flexibility and ease of micromolding for the rapid prototyping of microdevices and systems. Polydimethylsiloxane: Structure and Applications discusses the results of electric investigations of onion-like carbon (OLC)/polydimethysiloxane composites addressing very wide frequency and temperature ranges. Several kinds of devices for the observation of the behaviour of biological cells are discussed: micro-ridges, micro-grooves, micro-markers, and micro-slits, and the methodology to make each morphology by polydimethylsiloxane is described. The authors reviews the main applications of polydimethylsiloxane in urinary tract devices and the associated complications. As new solutions are needed to reduce bacterial adhesion and biofilm formation on polydimethylsiloxane -based devices, a testing platform is described to evaluate surface performance in both urinary catheters and ureteral stents. Also examined are the properties which make polydimethylsiloxane an excellent candidate for understanding complex biological behaviors, including its transparency for applying optical methods, biocompatibility and nontoxicity, high conformity with cells and other biostructures, gas permeability for the transfer of nutrients and oxygen, and flexibility. In the subsequent study, a hybrid material of titanium dioxide and polydimethylsiloxane is obtained and characterized using a sol-gel and electrospraying method. These results indicate that the hybrid material may be viable as an adsorbent, and that the optimization of the process could reduce both cost and analysis time. In order to further the applications of polydimethylsiloxane, the closing study describes the steps in the fabrication of its plasmonic structure, and also examines the switching effect of the sample.