Sustainable Nanotechnology for Environmental Remediation e-bog
2921,57 DKK
(inkl. moms 3651,96 DKK)
Sustainable Nanotechnology for Environmental Remediation provides a single-source solution to researchers working in environmental, wastewater management, biological and composite nanomaterials applications. It addresses the potential environmental risks and uncertainties surrounding the use of nanomaterials for environmental remediation, giving an understanding of their impact on ecological re...
E-bog
2921,57 DKK
Forlag
Elsevier
Udgivet
13 januar 2022
Længde
830 sider
Genrer
Materials science
Sprog
English
Format
epub
Beskyttelse
LCP
ISBN
9780323852920
Sustainable Nanotechnology for Environmental Remediation provides a single-source solution to researchers working in environmental, wastewater management, biological and composite nanomaterials applications. It addresses the potential environmental risks and uncertainties surrounding the use of nanomaterials for environmental remediation, giving an understanding of their impact on ecological receptors in addition to their potential benefits. Users will find comprehensive information on the application of state-of-the-art processes currently available to synthesize advanced green nanocomposite materials and biogenic nanomaterials. Other sections explore a wide range of promising approaches for green nanotechnologies and nanocomposites preparations. Case study chapters connect materials engineering and technology to the social context for a sustainable environment. Applications and different case studies provide solutions to the challenges faced by industry, thus minimizing negative social impacts. Provides information on the use of biologically mediated synthetic protocols to generate nanomaterials Discusses a wide range of promising?approaches?for?green nanotechnologies and nanocomposites preparations Presents novel fabrication techniques for bionanocomposites, paving the way for the development of a new generation of advanced materials that can cope with spatiotemporal multi-variant environments