Low-Power Wireless Communication Circuits and Systems e-bog
875,33 DKK
(inkl. moms 1094,16 DKK)
The increasing demand for extremely high-data-rate communications has urged researchers to develop new communication systems. Currently, wireless transmission with more than one Giga-bits-per-second (Gbps) data rates is becoming essential due to increased connectivity between different portable and smart devices. To realize Gbps data rates, millimeter-wave (MMW) bands around 60 GHz is attractiv...
E-bog
875,33 DKK
Forlag
Jenny Stanford Publishing
Udgivet
3 maj 2018
Længde
342 sider
Genrer
Electronics engineering
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9789814745970
The increasing demand for extremely high-data-rate communications has urged researchers to develop new communication systems. Currently, wireless transmission with more than one Giga-bits-per-second (Gbps) data rates is becoming essential due to increased connectivity between different portable and smart devices. To realize Gbps data rates, millimeter-wave (MMW) bands around 60 GHz is attractive due to the availability of large bandwidth of 9 GHz. Recent research work in the Gbps data rates around 60 GHz band has focused on short-range indoor applications, such as uncompressed video transfer, high-speed file transfer between electronic devices, and communication to and from kiosk. Many of these applications are limited to 10 m or less, because of the huge free space path loss and oxygen absorption for 60 GHz band MMW signal. This book introduces new knowledge and novel circuit techniques to design low-power MMW circuits and systems. It also focuses on unlocking the potential applications of the 60 GHz band for high-speed outdoor applications. The innovative design application significantly improves and enables high-data-rate low-cost communication links between two access points seamlessly. The 60 GHz transceiver system-on-chip provides an alternative solution to upgrade existing networks without introducing any building renovation or external network laying works.