Bionanocatalysis: From Design to Applications (e-bog) af -
Nguyen, Tuan Anh (redaktør)

Bionanocatalysis: From Design to Applications e-bog

2921,57 DKK (inkl. moms 3651,96 DKK)
Bionanocatalysis: From Design to Applications discusses recent advances in nano-biocatalysis, fundamental design concepts and their applications in a variety of industry sectors. Strategies for immobilizing enzymes onto nanocarriers, made from polymers, silicas, carbons, and metals, by physical adsorption, covalent binding, cross-linking, or specific ligand spacers are also discussed as are the...
E-bog 2921,57 DKK
Forfattere Nguyen, Tuan Anh (redaktør)
Udgivet 22 august 2023
Længde 576 sider
Genrer TJFD
Sprog English
Format pdf
Beskyttelse LCP
ISBN 9780323986427
Bionanocatalysis: From Design to Applications discusses recent advances in nano-biocatalysis, fundamental design concepts and their applications in a variety of industry sectors. Strategies for immobilizing enzymes onto nanocarriers, made from polymers, silicas, carbons, and metals, by physical adsorption, covalent binding, cross-linking, or specific ligand spacers are also discussed as are the advantages, problems and solutions derived from the use of non-porous nanomaterials for enzyme immobilization. This is an important reference source for materials scientists and chemical engineers who would like to learn more about how nanobiocatalysts are designed and used. Biocatalysis has emerged as a sustainable technique to synthesize valuable commodity chemicals with wide applications in various industrial domains, such as in agriculture, cosmetics, pharmaceuticals, biofuels, biosensors, biofuel cells, biochemicals, and foods. The synergistic integration of bio-catalysis engineering with nanostructured materials, as unique multifunctional carrier matrices, has emerged as a new interface of nano-biocatalysis (NBC). Outlines the major nanocarriers used in nanobiocatalyst design Explores the properties of nanomaterials that make them effective biocatalysts Assesses the challenges of manufacturing nanobiocatalysts on an industrial scale