Mining of Massive Datasets e-bog
509,93 DKK
(inkl. moms 637,41 DKK)
Written by leading authorities in database and Web technologies, this book is essential reading for students and practitioners alike. The popularity of the Web and Internet commerce provides many extremely large datasets from which information can be gleaned by data mining. This book focuses on practical algorithms that have been used to solve key problems in data mining and can be applied succ...
E-bog
509,93 DKK
Forlag
Cambridge University Press
Udgivet
13 november 2014
Genrer
Computing and Information Technology
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9781316147313
Written by leading authorities in database and Web technologies, this book is essential reading for students and practitioners alike. The popularity of the Web and Internet commerce provides many extremely large datasets from which information can be gleaned by data mining. This book focuses on practical algorithms that have been used to solve key problems in data mining and can be applied successfully to even the largest datasets. It begins with a discussion of the map-reduce framework, an important tool for parallelizing algorithms automatically. The authors explain the tricks of locality-sensitive hashing and stream processing algorithms for mining data that arrives too fast for exhaustive processing. Other chapters cover the PageRank idea and related tricks for organizing the Web, the problems of finding frequent itemsets and clustering. This second edition includes new and extended coverage on social networks, machine learning and dimensionality reduction.