Practical Synthetic Data Generation e-bog
359,43 DKK
(inkl. moms 449,29 DKK)
Building and testing machine learning models requires access to large and diverse data. But where can you find usable datasets without running into privacy issues? This practical book introduces techniques for generating synthetic datafake data generated from real dataso you can perform secondary analysis to do research, understand customer behaviors, develop new products, or generate new reven...
E-bog
359,43 DKK
Forlag
O'Reilly Media
Udgivet
19 maj 2020
Længde
166 sider
Genrer
Databases
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9781492072713
Building and testing machine learning models requires access to large and diverse data. But where can you find usable datasets without running into privacy issues? This practical book introduces techniques for generating synthetic datafake data generated from real dataso you can perform secondary analysis to do research, understand customer behaviors, develop new products, or generate new revenue.Data scientists will learn how synthetic data generation provides a way to make such data broadly available for secondary purposes while addressing many privacy concerns. Analysts will learn the principles and steps for generating synthetic data from real datasets. And business leaders will see how synthetic data can help accelerate time to a product or solution.This book describes:Steps for generating synthetic data using multivariate normal distributionsMethods for distribution fitting covering different goodness-of-fit metricsHow to replicate the simple structure of original dataAn approach for modeling data structure to consider complex relationshipsMultiple approaches and metrics you can use to assess data utilityHow analysis performed on real data can be replicated with synthetic dataPrivacy implications of synthetic data and methods to assess identity disclosure