Veracity of Big Data (e-bog) af Pendyala, Vishnu
Pendyala, Vishnu (forfatter)

Veracity of Big Data e-bog

265,81 DKK (inkl. moms 332,26 DKK)
Examine the problem of maintaining the quality of big data and discover novel solutions. You will learn the four V's of big data, including veracity, and study the problem from various angles. The solutions discussed are drawn from diverse areas of engineering and math, including machine learning, statistics, formal methods, and the Blockchain technology. Veracity of Big Data serves as an ...
E-bog 265,81 DKK
Forfattere Pendyala, Vishnu (forfatter)
Forlag Apress
Udgivet 8 juni 2018
Genrer Databases
Sprog English
Format pdf
Beskyttelse LCP
ISBN 9781484236338
Examine the problem of maintaining the quality of big data and discover novel solutions. You will learn the four V's of big data, including veracity, and study the problem from various angles. The solutions discussed are drawn from diverse areas of engineering and math, including machine learning, statistics, formal methods, and the Blockchain technology. Veracity of Big Data serves as an introduction to machine learning algorithms and diverse techniques such as the Kalman filter, SPRT, CUSUM, fuzzy logic, and Blockchain, showing how they can be used to solve problems in the veracity domain. Using examples, the math behind the techniques is explained in easy-to-understand language.Determining the truth of big data in real-world applications involves using various tools to analyze the available information. This book delves into some of the techniques that can be used. Microblogging websites such as Twitter have played a major role in public life, including during presidential elections. The book uses examples of microblogs posted on a particular topic to demonstrate how veracity can be examined and established. Some of the techniques are described in the context of detecting veiled attacks on microblogging websites to influence public opinion.What You'll LearnUnderstand the problem concerning data veracity and its ramificationsDevelop the mathematical foundation needed to help minimize the impact of the problem using easy-to-understand language and examplesUse diverse tools and techniques such as machine learning algorithms, Blockchain, and the Kalman filter to address veracity issuesWho This Book Is ForSoftware developers and practitioners, practicing engineers, curious managers, graduate students, and research scholars