Deep Learning on Edge Computing Devices e-bog
1459,97 DKK
(inkl. moms 1824,96 DKK)
Deep Learning on Edge Computing Devices: Design Challenges of Algorithm and Architecture focuses on hardware architecture and embedded deep learning, including neural networks. The title helps researchers maximize the performance of Edge-deep learning models for mobile computing and other applications by presenting neural network algorithms and hardware design optimization approaches for Edge-d...
E-bog
1459,97 DKK
Forlag
Elsevier
Udgivet
2 februar 2022
Længde
198 sider
Genrer
Artificial intelligence
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9780323909273
Deep Learning on Edge Computing Devices: Design Challenges of Algorithm and Architecture focuses on hardware architecture and embedded deep learning, including neural networks. The title helps researchers maximize the performance of Edge-deep learning models for mobile computing and other applications by presenting neural network algorithms and hardware design optimization approaches for Edge-deep learning. Applications are introduced in each section, and a comprehensive example, smart surveillance cameras, is presented at the end of the book, integrating innovation in both algorithm and hardware architecture. Structured into three parts, the book covers core concepts, theories and algorithms and architecture optimization.This book provides a solution for researchers looking to maximize the performance of deep learning models on Edge-computing devices through algorithm-hardware co-design. Focuses on hardware architecture and embedded deep learning, including neural networks Brings together neural network algorithm and hardware design optimization approaches to deep learning, alongside real-world applications Considers how Edge computing solves privacy, latency and power consumption concerns related to the use of the Cloud Describes how to maximize the performance of deep learning on Edge-computing devices Presents the latest research on neural network compression coding, deep learning algorithms, chip co-design and intelligent monitoring