Data Science: The Hard Parts e-bog
359,43 DKK
(inkl. moms 449,29 DKK)
This practical guide provides a collection of techniques and best practices that are generally overlooked in most data engineering and data science pedagogy. A common misconception is that great data scientists are experts in the "e;big themes"e; of the disciplinemachine learning and programming. But most of the time, these tools can only take us so far. In practice, the smaller tools a...
E-bog
359,43 DKK
Forlag
O'Reilly Media
Udgivet
1 november 2023
Længde
256 sider
Genrer
UYQM
Sprog
English
Format
pdf
Beskyttelse
LCP
ISBN
9781098146443
This practical guide provides a collection of techniques and best practices that are generally overlooked in most data engineering and data science pedagogy. A common misconception is that great data scientists are experts in the "e;big themes"e; of the disciplinemachine learning and programming. But most of the time, these tools can only take us so far. In practice, the smaller tools and skills really separate a great data scientist from a not-so-great one.Taken as a whole, the lessons in this book make the difference between an average data scientist candidate and a qualified data scientist working in the field. Author Daniel Vaughan has collected, extended, and used these skills to create value and train data scientists from different companies and industries.With this book, you will:Understand how data science creates valueDeliver compelling narratives to sell your data science projectBuild a business case using unit economics principlesCreate new features for a ML model using storytellingLearn how to decompose KPIsPerform growth decompositions to find root causes for changes in a metricDaniel Vaughan is head of data at Clip, the leading paytech company in Mexico. He's the author of Analytical Skills for AI and Data Science (O'Reilly).