Data-Driven Solutions to Transportation Problems (e-bog) af Zeng, Ziqiang
Zeng, Ziqiang (forfatter)

Data-Driven Solutions to Transportation Problems e-bog

Not for sale (ekskl. moms Not for sale)
Data-Driven Solutions to Transportation Problems explores the fundamental principle of analyzing different types of transportation-related data using methodologies such as the data fusion model, the big data mining approach, computer vision-enabled traffic sensing data analysis, and machine learning. The book examines the state-of-the-art in data-enabled methodologies, technologies and applicatio…
Data-Driven Solutions to Transportation Problems explores the fundamental principle of analyzing different types of transportation-related data using methodologies such as the data fusion model, the big data mining approach, computer vision-enabled traffic sensing data analysis, and machine learning. The book examines the state-of-the-art in data-enabled methodologies, technologies and applications in transportation. Readers will learn how to solve problems relating to energy efficiency under connected vehicle environments, urban travel behavior, trajectory data-based travel pattern identification, public transportation analysis, traffic signal control efficiency, optimizing traffic networks network, and much more. Synthesizes the newest developments in data-driven transportation science Includes case studies and examples in each chapter that illustrate the application of methodologies and technologies employed Useful for both theoretical and technically-oriented researchers
E-bog Not for sale
Forfattere Zeng, Ziqiang (forfatter)
Forlag Elsevier
Udgivet 04.12.2018
Længde 299 sider
Genrer Transport: general interest
Sprog English
Format pdf
Beskyttelse LCP
ISBN 9780128170274
Data-Driven Solutions to Transportation Problems explores the fundamental principle of analyzing different types of transportation-related data using methodologies such as the data fusion model, the big data mining approach, computer vision-enabled traffic sensing data analysis, and machine learning. The book examines the state-of-the-art in data-enabled methodologies, technologies and applications in transportation. Readers will learn how to solve problems relating to energy efficiency under connected vehicle environments, urban travel behavior, trajectory data-based travel pattern identification, public transportation analysis, traffic signal control efficiency, optimizing traffic networks network, and much more. Synthesizes the newest developments in data-driven transportation science Includes case studies and examples in each chapter that illustrate the application of methodologies and technologies employed Useful for both theoretical and technically-oriented researchers